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INTRODUCTION

Silverized Teflon TM (Ag/FEP) is a widely used passive thermal control material for space

applications. The material has a very low a/e ratio (<0.1) for low operating temperatures and is
fabricated with various FEP thicknesses (as the Teflon TM thickness increases, the emittance

increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved

shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions, as

demonstrated by the Long Duration Exposure Facility (LDEF) (ref. 1), Solar Max (ref. 2), Space-

craft Charging at High Altitudes (SCATHA) (ref. 3), and other flight experiments (refs. 4, 5).

Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping,
direct adhesive bonding of tapes and sheets, and by Velcro TM tape adhesively bonded to back

surfaces. On LDEF, for example, 5-mil blankets held by Velcro TM and clamping were used for

thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets

were used on other LDEF experiments, both for thermal control and as tape to hold other thermal

control blankets in place.

Performance data over extended time periods are available from a number of flights. The

observed effects on optical properties, mechanical properties, and surface chemistry will be summa-

rized in this paper. This leads to a discussion of performance life estimates and other design lessons

for Ag/FEP thermal control material.

LDEF RESULTS SUMMARY

The LDEF flight has provided the opportunity to substantially increase our knowledge of the

performance of Ag/FEP in low Earth orbit (LEO), improving our understanding of both the expected

performance and the limitations of this material. Specimens on the leading edge (rows 7 to 11) of the

LDEF were exposed to both atomic oxygen (AO) and solar ultraviolet (UV). Those specimens

located toward the trailing edge (rows 1 to 5 and 12) received only the solar exposure. Row 6 was a

transition region, with some exposure to AO, but at reduced levels relative to the leading edge rows.
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Optical Properties

A variety of visible changes were observed in the Ag/FEP surfaces on both leading- and

trailing-edge samples. The exposed leading-edge blanket surfaces appeared uniformly foggy or
clouded. The exposed trailing-edge blanket FEP surfaces were "patterned" in some areas with

alternating transparent and clouded bands. Clouded areas were observed on many blanket edges,
particularly near the bends between exposed and masked material ("transition zone"). Areas of

orange/brown discoloration were notable near some of the keyhole-shaped vent slots along the
edges of the Ag/FEP blankets.

A large number of optical property measurements were made on LDEF blankets (ref. 6). For

the baseline measurement, areas not visibly contaminated and with no visible impacts and/or

delaminations were chosen. Figures 1 and 2 show the distribution of end-of-mission absorption and

emittance values around the LDEF. Solar absorptance remained constant to within experimental

uncertainty, except for small areas where contaminant films were deposited or impacts had occurred.
Locations that were adhesively bonded to an aluminum substrate were darkened in areas where

cracking of the silver and Inconel TM layers allowed the underlying adhesive to bleed through over

time and be exposed to solar radiation (ref. 7). This process led to increases in absorptance up to

0.25-in small areas. Data from both Boeing Defense & Space Group and the European Space
Research and Technology Centre (ESTEC) show the expected decrease in emissivity as the

thickness is decreased. The thickness change observed from leading-edge blankets was a conse-

quence of atomic oxygen reaction with the FEP surface after the polymer structure was altered by

vacuum ultraviolet (VUV) photons. Most blanket areas from the trailing-edge side, exposed only to

solar UV, remained specular. The diffuse reflectance increased for those areas toward the leading

edge roughened by exposure to both atomic oxygen and solar UV, giving rise to the uniformly
clouded appearance.
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Figure 1. Absorptance of Ag/FEP versus location on LDEF.
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Figure 2. Emittance of Ag/FEP versus location on LDEF.

Mechanical Properties

Mechanical property changes that occurred in 5-rail Ag/FEP on LDEF (ref. 8) are indicated

by the property data in Table 1. FEP from the trailing edge that was embrittled due to solar exposure
had ultimate tensile values decreased by about one-third relative to controls. The percent-elonga-
tion to failure of the solar UV embrittled material also decreased by about 20 percent, while the

recessed FEP from the leading edge was still flexible with percent-elongation to failure values only

slightly decreased relative to controls. The leading-edge mechanical properties are not significantly

different, although thinning of the Teflon TM would ultimately lead to reduced mechanical properties.

Comparisons between specimens from the leading edge and trailing edge, which had each
been flexed over a 90 ° comer, showed that the FEP from the leading edge was still intact, and no

cracking was visible under a x 100 microscope. FEP from the trailing edge, which showed no

cracking prior to flexure, showed a large number of parallel cracks in the area of the specimen flexed
around the radius. These cracks did not extend completely through the FEP layer, leading to the

conclusion that only the UV-damaged portion of the FEP was cracking. This observation, together
with the tensile measurements and the observation that up to about 20 percent of the thickness was

recessed from the leading-edge specimens, suggests that significant UV damage extended about

one-quarter of the way through the material.
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Table 1. Mechanicalpropertieschangesof FEP with exposure on LDEF.

Percent Elongation to Ultimate Tensile Strength,

FEP From A_FEP Blankets Failure (+40 percent) N/mm 2 (:1:3 N/mm 2)

Trailing Edge, Rows 1 to 6

Exposed 230 14

Masked 300 21

Leading Edge, Rows 7 to 11

Exposed 290 19

Masked 310 20

The Ag/FEP tapes holding the thermal control blankets for the Naval Research Laboratory
cosmic-ray detection experiment (M0001) failed along at least two sides of every blanket. The most

likely cause was shrinking and stretching due to thermal cycling. Some aluminum-backed FEP

specimens from The Aerospace Corporation Space Environmental Effects on Materials Experiment

(M0003) also failed mechanically during flight. This failure has been attributed to stress induced by
thermal cycling and not to any significant material property change. The Ag/FEP blankets mounted

with Velcro TM from the back, with large areas free to stretch during solar exposure, did not fail.

Ag/FEP material adhesively bonded to aluminum substrates also remained intact mechanically.
Cracking of the silver and Inconel TM layers of adhesively bonded Ag/FEP films have been attributed

to flexing/stretching during preflight application to hardware (refs. 7, 9), and not to on-orbit stresses.

Surface and Chemical Analyses

The leading-edge samples of Ag/FEP from rows 7 to 11 all had roughened surfaces typical of

high-velocity atomic oxygen erosion of polymers. The highly textured surfaces gave rise to diffuse

light scattering and the consequent cloudy appearance. The FEP reaction efficiency on the leading
edge was measured at 0.34x10 -24 cm3/O atom (ref. 10). Analysis by x-ray photoelectron spec-

troscopy (XPS) of the exposed surfaces showed that the surface composition and chemistry of the

FEP remaining after erosion was indistinguishable from the control FEP, except for trace amounts of

some contaminants, including oxygen (refs. 11, 12). Most deposited contaminants and damaged
polymer were removed during atomic oxygen erosion.

The FEP surfaces exposed on the trailing edge of LDEF underwent changes that were
observed both by scanning electron microscopy (SEM) and XPS. Within short distances on some

trailing-edge samples, both the surface morphology and surface contamination levels were observed

to change dramatically (refs. 11,12). The FEP surfaces nearest to row 3 were moderately to heavily

contaminated, and the blanket surface areas that appear fogged or cloudy had become sufficiently

diffuse to be observed visibly. Further from row 3, FEP surfaces showed little texture development
and no significant contamination except oxygen, possibly from postflight exposure to moisture.

XPS data for the trailing-edge surfaces fell into two categories. The f'u'st was characterized

by low contamination levels (Si < 1 percent) and a carbon ls spectrum that arises from degradation
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of the FEPsurface.The spectralchangeswereconsistentwith damageto the carbonbackboneof the
TeflonTM polymer, resulting in molecular weight degradation, new chain terminations, branching, and

crosslinking through free-radical reactions. The solar UV radiation exposure of the LDEF surfaces

caused this FEP surface degradation. The FEP surfaces were also exposed to the stress of about
34,000 thermal cycles with calculated minimum temperatures of about -54 °C, but the maximum tem-

peratures calculated for Ag/FEP blankets on LDEF were less than 0 °C and not sufficient to break

chemical bonds. The second category of trailing-edge surfaces was characterized by moderate to
high levels of surface contamination (Si, O, C, N, and S, and sometimes C1). Contaminant carbon,

thought to build up on the trailing-edge surfaces from decomposition products of outgassed silicones

and hydrocarbons, was distinguished from FEP and degraded FEP carbon by binding energy, and

was measured at < 20 percent of the total surface composition. The predominant chemical state of Si

identified on the trailing-edge FEP surfaces was Sit2. The contaminant film was probably patchy on

a submicron scale, with significant areas covered by <100 A of deposited contamination.

COMPARISON WITH OTHER FLIGHT EXPERIENCE WITH AG/FEP

Prior to shuttle operations, a number of spacecraft flew with either Ag/FEP or AI/FEP
material as test specimens on thermal control coating experiments (refs. 3-5,13,14). Thermal data

from each of these experiments were telemetered to the ground, and the optical properties data were

deduced indirectly from the calorimetry, as shown in Table 2. Spacecraft at altitudes ranging from

tens to hundreds of thousands of kilometers showed rather large changes in absorptance over time.
Among spacecraft flown at altitudes less than 1,000 km, specimens on both 0S0-H (ref. 13) and

ML-101 (ref. 14) experiments showed rapid changes of about 0.02-in absorptance during the first

month in orbit, followed by very slow, small changes over the following months and years. A likely

cause of the early changes was contamination due to rapid outgassing and initial venting of the
spacecraft.

The Solar Max repair mission, conducted on STS-41-C after the deployment of LDEF in

1984, returned 5-mil Ag/FEP surfaces that had been in orbit from February 1980 until April 1984 at

altitudes that decreased from 574 to 491 km. Postflight measurements of solar absorptance (as)

were made in many areas with values of 0.06 to 0.11 representing 80 to 90 percent of the Ag/FEP

area (ref. 2). As was observed on LDEF, these areas show minimal degradation compared to typical
values of 0.05 to 0.07 for unflown Ag/FEP. In the remaining area, the solar absorptance had

increased to values ranging from 0.28 to 0.4, but in these regions, the silver Teflon TM either had been

visibly contaminated or had environmental exposure on both sides of the film, resulting in severe

degradation of the inconel and silver metallization layers. The tensile strength and elongation were

also measured on the returned Solar Max samples with results similar to the changes observed on

the LDEF samples. The thermal control performance of Ag/FEP in the LEO environment has

generally been stable unless erosion of the Teflon TM on the leading edge by atomic oxygen erosion

occurs, which can obviously result in emissivity changes. The more recent shuttle flights were too

short in duration to cause large changes in the Ag/FEP (ref. 15).
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Table 2. Hight experiencewith metalizedTeflonTM.

Altitude (Inclination)

235,639 x 201,599 km(17 °)

Spacecraft

IMP-H

237,056 x 370 - 1600 km (29 °) IMP-1

43,288 x 27,578 km (7.9 °) P78-2

(SCATHA)

778 x 737 km (98 ° ) ML-101

574 - 491 km (28.5 °) Solar Max

560 x 327 km (33 °)

480 - 330 km (28.5 °)

270 km (28.5 o)

220 km (28.5 o)

OSO-H

LDEF

STS-41G

Shuttle Flight

(EOIM-II)

STS-8 Shuttle

Flight

(EOIM-I)

] Thermal Property, Changes

Aoq > 0.07 over 12,000 ESH

Large Ao_ over time

Am> 0.2 over 10 years (-27,800 ESH)

Aeq < 0.02 initial ;then low Ass over time

Aoq <_0.04 typical; some areas 0.28 to 0.4 (-4

years)

Rapid Aas/e -0.02, then constant (-8,000 ESH)

A_ _ 0.01 typical; some areas >0.24 (-5.8

years)

Slight Changes (<100 ESH)

Slight Changes (<100 ESH)

Results from SCATHA are now available that cover 10 years of on-orbit performance of

thermal control materials at geosynchron0us altitudes (ref. 3). In 5 years, both 5-mil and 2-mil

Ag/FEP had degraded to as values of greater than 0.24 due to electron and proton radiation.

Contamination on SCATHA was probably not significant in these measurements, and these data

should represent the material performance at geosynchronous altitudes. The Interplanetary Explorer

missions IMP-H and IMP-1 (ref. 13) were flown at even higher altitudes, which have a similar UV

and solar wind environment as geosynchronous altitudes, but are beyond the trapped-radiation,

charged-particle belt. The Ag/FEP samples showed less degradation than observed on SCATHA.

The flight recession rate data for Ag/FEP shown in Table 3 comes from essentially three

sources: shuttle flights (ref. 15), results from a Lockheed Missiles & Space Company, Inc. experi-

ment published in 1985 (ref. 16), and the LDEF exposures (ref. 10). The Effects of Oxygen

Interaction with Materials (EOIM)experiments were based on a well-documented exposure on
orbit and measurements of the returned flight samples. Due to the short mission, which limited

oxygen atom fluence and also the UV exposure, the erosion of the Teflon TM was too low on EOIM I
and II to make an accurate measurement. A limit for the erosion rate was determined to be <0.05

cm3/O atom. FEP exposed to atomic oxygen for the first 2 months on the Lockheed flight experiment

showed little recession. After 2 months and -100 ESH UV, the optical properties of the Ag/FEP on

the Lockheed flight began to change in a manner suggesting material recession. For the last few
days of exposure on the Lockheed experiment, the calculated recession rate was only about

0.13xl 0-24 cm3/O atom, barely one-third of the average LDEF rate. The Teflon TM surfaces returned

from the Solar Max Repair Mission did show evidence of the characteristic texture of an oxygen

atom-eroded surface, but measurements of material loss were not reported.

The well-documented erosion observed for silver Teflon TM on the leading edge of LDEF

results in a higher reaction efficiency for FEP Teflon TM than observed previously. This indicates that

a synergistic effect exists with the atomic oxygen and UV. In contrast, linear relationships were

observed for polymers such as Kapton, and there is good agreement on reaction efficiency between
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thesesamemissions.The UV degradation,clearly indicatedin the studiesof the trailing-edge
TeflonTM surface from LDEF, is undoubtedly responsible for the higher erosion observed on LDEF

(ref. 11). The LDEF mission had a high UV exposure followed by an increasing atomic oxygen

fluence during the flight, which resulted in nearly an order of magnitude higher reaction efficiency than
observed on earlier flights. These data conf'trm that atomic oxygen-induced recession of FEP in LEO

is also a function of UV exposure level.

Table 3. Flight measurements of FEP Teflon TM reaction efficiency.

Flight

STS-8 Shuttle

Flight (EOIM-I)

Atomic Oxygen
Fluence

(Atoms/cm 2)

8.58x1019

Ultraviolet (Hr)

<50

Reaction Efficiency
(cm3/O atom)

Not measured

STS -41G Shuttle 3.5x 1020 <50 <0.05x 10 -24

Flight (EOIM-II)

Solar Max ~7x1020 Unknown Not measured

Lockheed 1.85x1022 300 0.075 to 0.13x10 -24

Experiment

LDEF 3.3 to 9.0x1021 6,000 to 11,000 0.34x10 24

PERFORMANCE LIFE ESTIMATES

Materials performance lifetime limits can be determined by several factors: increases in the

o./e ratio, causing increases in temperature above the allowed performance values; mechanical failure

of the material; tearing due to thermal-cycling-induced stresses; embrittlement by solar VUV radia-

tion, causing subsequent cracking; impact damage, creating punctures and associated damage and/or

darkening of a portion of the blanket; and redeposition of outgassed contaminant materials that
darken and change the absorptance characteristics of the material. Combined information from

shuttle flights (ref. 15), LDEF (refs. 8, 10), Solar Max (ref. 2), and other flights (ref. 16) demon-

strates that the recession rate of the Ag/FEP increases under combined UV and AO exposure.

LDEF results provide the highest measured recession rates for this material seen to date.

An estimate of the expected environmental degradation for a specified mission can be made

from the mission profile, which establishes the orbit and required lifetime. End-of-life requirements

for the optical properties must be established. At geosynchronous altitude, the SCATHA degrada-

tion curves could be used to estimate the performance life with exposure to the trapped radiation

charged particle belt. In LEO orbits, the atomic oxygen flux is strongly dependent upon altitude and

solar activity. The atomic oxygen and solar UV fluences are determined based on the mission profile,

and the total recession over the life of the mission is predicted. The minimum required thickness of

the Ag/FEP material at end-of-life is based on the well established values for emittance of FEP

as a function of thickness. The actual recession rate used will depend on the expected duration of
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themission.For shortperiodsof time in LEO, recessionratesof 0.15x10-24cm3/Oatomwill be
sufficient to establishrecession.For missionsof greaterlength,the LDEF value0.34x10-24cm3/O
atomis clearly moreappropriate.In practice,theknownreactionefficiency andexpectedoxygen
fluenceareusedto predict theexpectedlife of a film with agiveninitial thickness.

Lifetime predictionsshouldalsoincludeconsiderationof thefraction of the blanket surface

that will likely be darkened or destroyed by impacts and potential absorptance increases due to
contaminant films over a fraction of the surface. These considerations were minor for LDEF. Impacts

darkened 2 percent or less of the surface area of each LDEF blanket and delaminated <5 percent of

the area on each blanket. Contaminant films caused absorptance values as high as about 0.25, but

only for relatively small surface areas. The minimum area required for a given radiator would need to

be scaled up by only 5 percent to 10 percent to compensate for these effects.

DESIGN AND PERFORMANCE LESSONS

In summary, the cumulative space environmental effects on Ag/FEP were a function of loca-
tion and exposure orientation. The LDEF results for silver Teflon TM indicate that the thermal per-

formance shows minimal degradation from the solar UV exposures of up to 11,000 ESH. The

charged-particle environment at these LEO altitudes is too low to cause degradation, but at higher

altitudes, up to geosynchronous altitudes, the Teflon TM is susceptible to degradation. Above

geosynchronous altitudes, Teflon TM may have longer lifetimes due to the lower charged-particle

environment. At the lower LEO altitudes, atomic oxygen erosion may result in degraded properties,

depending on total fluence levels. The leading edge of LDEF was dominated by the effect of the

atomic oxygen, resulting in erosion of the Teflon TM. The resulting surfaces were highly textured and

not significantly contaminated. Contaminants and UV-degraded FEP were removed by the At-
induced surface erosion. The trailing-edge samples had a wide variety of surface morphologies, and

extensive contamination was present. The chemical structure of the FEP that remained on leading-

edge blankets was essentially identical to ground control specimens. On trailing-edge surface areas

where contamination was relatively low (particularly at larger angles to the trailing edge), degraded

FEP, caused by UV exposure, was detected using XPS measurements. This degradation appears to

result from damage to the carbon backbone of the Teflon TM polymer, resulting in molecular weight

degradation, new chain terminations, branching, and crosslinking through free-radical reactions. The

UV degradation could have occurred at a relatively constant rate during the entire mission. Any
increases in the rate would have occurred toward the end of the mission as the increased solar

activity produced more energy in the VUV. Teflon TM erosion occurred more rapidly near the end of

the mission as the altitude dropped and the atomic oxygen flux rapidly increased.

The problem of delamination of Ag/FEP thermal control material at the metal/polymer inter-

face must still be addressed. This interface strength may degrade during Earth storage of Ag/FEP,

and deterioration was accelerated in the space environment. Delamination of the Ag/FEP has the
potential for catastrophic failure of the material's thermal control properties when unsupported; this

was deterred on the LDEF blankets by the presence of the paint on the back surfaces. There is also
interest in the effects of adhesive bonding on Ag/FEP performance. Discoloration and streaking was

observed at the metal/polymer interface of adhesively bonded Ag/FEP on LDEF, with some degra-

dation of thermal control properties. This was due to diffusion of adhesive components through

cracks in the metalization layer, which were caused by improper application and/or handling.
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Ag/FEP hasdemonstratedgood performanceover long-term exposures in selected environ-

ments. For a given design, the acceptability of metalized Teflon TM, either silver or aluminum, will

depend on assessing degradation due to the charged-particle or atomic-oxygen environment

expected for the planned orbit and lifetime.

REFERENCES

.

,

.

.

.

,

o

.

o

Stein, B.A., and Pippin. H.G.: "Preliminary Findings of the LDEF Materials Special

Investigation Group." LDEF--69 Months in Space First Post-Retrieval Symposium, ed.

A.S. Levine, NASA Conference Publication 3134, 1992, pp. 617-641.

10.

Park, J.J.: "Results of Examination of Materials from the Solar Maximum Recovery Mission."

Proceedings of the SMRM Degradation Study Workshop, NASA Publication 408-SMRM-79-
0001, pp. 211-225.

Hall, D.F., and Fote, A.A.: '°rhermal Control Coatings Performance at Near Geosynchronous

Altitude." AIAA J. Thermophysics and Heat Transfer, vol. 6, No. 4, October-December 1992,

pp. 665-671.

Hoffman, R.H.: "Spaceflight Performance of Silver Coated FEP Teflon TM as a Thermal Control

Surface on the IMP-1 Spacecraft." NASA GSFC X-762-73-113, April 1973.

Lehn, W.L., and Hurley, C.J.: "Skylab D024 Thermal Control Coatings and Polymeric Films

Experiment." AIAA/AGU Conference on Scientific Experiment of Skylab, Huntsville, AL,

October 30-November 1, 1974 (AIAA 74-1228).

Dursch, H.W., Spear, W.S., Miller, E.A., Bohnhoff-Hlavacek, G.L., and Edelman, J.: "Analysis

of Systems Hardware Flown on LDEF--Results of the Systems Special Investigation Group."

NASA Contractor Report 189628, 1992.

Zwiener, J.M., Herren, K.A., Wilkes, D.R., Hummer, L., and Miller, E.R.: "Unusual Materials

Effects Observed on the Thermal Control Surfaces Experiment (S0069)." LDEF-69 Months in

Space First Post-Retrieval Symposium, ed. A.S. Levine, NASA Conference Publication 3134,

1992, pp. 919-933.

Levadou, F., and Pippin, G.: "Effects of the LDEF Environment on the Ag/FEP Thermal

Blankets." LDEF Materials Workshop '91, eds. B.A. Stein and P.R. Young, NASA Conference

Publication 3162, 1992, pp. 311-344.

Hemminger, C.S.: "Investigation of Edge Discoloration of Silvered Teflon TM Thermal Control

Tape on GPS Satellite Hardware." Aerospace Report No. TOR-009(5470-02)-l, July 15, 1991.

Banks, Bruce A., Gebauer, L., and Hill, C.H.: "Atomic Oxygen Interactions with FEP Teflon TM

and Silicones on LDEF." LDEF--69 Months in Space First Post-Retrieval Symposium, ed.

A.S. Levine, NASA Conference Publication 3134, 1992, pp. 801-815.

29



11.

12.

13.

14.

15.

16.

Hemminger, C.S., Stuckey, W.K., and Uht, J.C.: "Space Environmental Effects on Silvered

Teflon TM Thermal Control Surfaces." LDEF--69 Months in Space First Post-Retrieval

Symposium, ed. A.S. Levine, NASA Conference Publication 3134, 1992, pp. 831-845.

Hemminger, C.S.: "Surface Contamination on LDEF Exposed Materials." LDEF Materials

Workshop '91, eds. B.A. Stein and P.R. Young, NASA Conference Publication 3162, 1992, pp.
159-174.

Triolo, J.J., Heaney, J.B., and Hass, G.: "Coatings In Space Environment." Optics in Adverse
Environments, SPIE Vol. 121, 1977, pp. 46--66.

Prince, D.E.: "ML-101 Thermal Control Coating Spaceflight Experiment.'" AFML-TR-75-17,

August 1975, and R.A. Winn, "ML-101 Thermal Control Coating Spaceflight Experiment."

AFML-TR-78-99, July 1978.

"Atomic Oxygen Effects Measurements for Shuttle Missions STS-8 and 41-G," vols. I-III,

J. Visentine, ed., NASA Technical Memorandum 100459, September 1988.

Knopf, P.W., Martin, R.J., Damman, R.E., and McCargo, M.: "Correlation of Laboratory and

Flight Data for the Effects of Atomic Oxygen on Polymeric Materials." AIAA 20th
Thermophysics Conference, Williamsburg, VA, June 19-21, 1985.

30


